Skip Navigation
Skip to contents

GEO DATA : GEO DATA

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "Sung-Hyun Gong"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Data Articles
GeoAI Dataset for Industrial Park Segmentation from Sentinel-2 Satellite Imagery and GEMS
Sung-Hyun Gong, Hyung-Sup Jung, Geun-han Kim, Geun-Hyouk Han, Il-Hoon Choi, Jin-Sung Hong
GEO DATA. 2025;7(1):36-44.   Published online February 13, 2025
DOI: https://doi.org/10.22761/GD.2024.0054
  • 337 View
  • 42 Download
AbstractAbstract PDF
Air pollution in East Asia presents critical environmental and health challenges, particularly in industrial regions affected by domestic and cross-border emissions. This study developed a GEO AI dataset specifically for industrial park segmentation, integrating Sentinel-2 satellite imagery, Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite data, and Air Quality Monitoring Network data. Optimized for semantic segmentation tasks with labeled data specifically for industrial park classification, this dataset serves as a foundational asset for the precise identification and spatial tracking of major air pollution sources. We validated the dataset’s applicability using a modified U-Net model, achieving a mean intersection over union of 0.8146 and pixel accuracy of 0.9608, thereby demonstrating its potential as a tool for detecting and monitoring pollutant sources in industrial areas. With future expansion through additional temporal data and diverse pollutant measurements, this dataset is anticipated to support regional air quality monitoring efforts and inform strategies for pollution control across East Asia.
GeoAI Dataset for Urbanized Area Segmentation from Landsat 8/9 Satellite Imagery and GEMS
Sung-Hyun Gong, Hyung-Sup Jung, Geun-Han Kim, Geun-Hyouk Han, Il-Hoon Choi, Jin-Sung Hong
GEO DATA. 2024;6(4):478-486.   Published online December 31, 2024
DOI: https://doi.org/10.22761/GD.2024.0053
  • 232 View
  • 21 Download
AbstractAbstract PDF
In South Korea, air pollution has emerged as a pressing social issue, necessitating data-driven approaches to monitor sources of air pollutants. This study constructed a GEO AI dataset for detecting air pollution sources in urbanized areas, utilizing Landsat 8/9 satellite imagery, Geostationary Environment Monitoring Spectrometer geostationary satellite data, and air quality monitoring network data. The dataset is optimized for semantic segmentation tasks, including labeled data for urban area segmentation, and is designed to enable precise detection of pollution sources within urban regions by integrating satellite imagery and air quality information. Using this dataset, we applied a modified U-Net model to classify pollutant sources in urbanized areas, achieving high performance with an mIoU of 0.8592 and pixel accuracy of 0.9433. These results demonstrate the effectiveness of the GEO AI dataset as a tool for identifying and managing major pollution sources, providing foundational data for air quality monitoring and policy development across South Korea and East Asia. With further integration of additional air pollution data, this dataset is expected to contribute to long-term air quality management and the mitigation of health impacts associated with pollution.
Original Paper
GeoAI Dataset for Rural Hazardous Facilities Segmentation from KOMPSAT Ortho Mosaic Imagery
Sung-Hyun Gong, Hyung-Sup Jung, Moung-Jin Lee, Kwang-Jae Lee, Kwan-Young Oh, Jae-Young Chang
GEO DATA. 2023;5(4):231-237.   Published online December 28, 2023
DOI: https://doi.org/10.22761/GD.2023.0054
  • 2,232 View
  • 83 Download
  • 1 Citations
AbstractAbstract PDF
In South Korea, rural areas have been recognized for their potential as sustainable spaces for the future, but they are currently facing major problems. Unplanned construction of facilities such as factories, livestock facilities, and solar panels near residential areas is destroying the rural environment and deteriorating the quality of life of residents. Detection and monitoring of rural facilities are necessary to prevent disorderly development in rural areas and to manage rural space in a planned manner. In this study, satellite imagery data was utilized to obtain information on rural areas, which is useful for observing large areas and monitoring time series changes compared to field surveys. In this study, KOMPSAT ortho-mosaic optical imagery from 2019 and 2020 were utilized to construct AI training datasets for rural hazardous facilities segmentation for Seosan, Anseong, Naju, and Geochang areas. The dataset can be used in image segmentation models to classify rural facilities and can be used to monitor potentially hazardous facilities in rural areas. It is expected to contribute to solving rural problems by serving as the basis for rural planning.

Citations

Citations to this article as recorded by  
  • Performance Comparison of Water Body Detection from Sentinel-1 SAR and Sentinel-2 Optical Imagery Using Attention U-Net Model
    Il-Hoon Choi, Eu-Ru Lee, Hyung-Sup Jung
    Korean Journal of Remote Sensing.2024; 40(5-1): 507.     CrossRef
Article
Expand and Renewal of Analyzed Satellite Image and Service
Young-Woong Yoon, Che-Won Park, Sung-Hyun Gong, Won-Kyung Baek, Hyung-Sup Jung
GEO DATA. 2021;3(4):32-48.   Published online December 31, 2021
DOI: https://doi.org/10.22761/DJ2021.3.4.005
  • 1,354 View
  • 30 Download
AbstractAbstract PDF
In this study, additional satellite analysis data in 2019, 2020, and 2021 were generated using Landsat-8 and Sentinel-2 satellite images. We additionally employed 19 types of satellite analysis methods, and generated totally 57 cases of satellite analysis data for three years. In addition, 34 types of satellite analysis data were updated using 2021 satellite data. In conclusion, a total of 91 cases of satellite analysis data were generated. The coverage of the study is the entire South Korea. The spatial resolution and the coordinate system were 30 m and UTM-K (EPSG: 5179) respectively. The products are provided as the entire South Korean and regional data, respectively. In addition, it is provided in three data types: ASCII, ArcGIS Grid, and GeoTIFF as same as last distribution. All satellite image analysis data can be downloaded free of charge from the Environmental Big Data website (www.bigdata-environment.kr), an environmental business big data platform.

GEO DATA : GEO DATA
TOP