1석박사통합과정생, 서울시립대학교 공간정보공학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
2석박사통합과정생, 서울시립대학교 스마트시티학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
3석사, 서울시립대학교 공간정보공학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
4석사, 서울시립대학교 스마트시티학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
5연구관, 국립환경과학원 환경위성센터, 인천광역시 서구 환경로 42, 22689, 대한민국
6연구사, 국립환경과학원 환경위성센터, 인천광역시 서구 환경로 42, 22689, 대한민국
7연구원, 국립환경과학원 환경위성센터, 인천광역시 서구 환경로 42, 22689, 대한민국
8교수, 서울시립대학교 공간정보학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
9교수, 서울시립대학교 스마트시티학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
In South Korea, Asian dust frequently occurs during the spring, causing various health issues, including respiratory diseases. Consequently, public awareness and concern about air pollutants have increased, leading to demands for improved air quality and accurate forecasting. To meet these demands, the Ministry of Environment has deployed the Geostationary Environment Monitoring Spectrometer (GEMS) on the GK2B satellite to monitor atmospheric pollutants and climate change-inducing substances in real-time. The current GEMS dust product, generated using thresholds of the UV-aerosol index and visible-aerosol index, has shown limitations in accurately detecting suspended particulate matter. This study aims to develop a comprehensive AI dataset for improving GEMS Asian dust detection. Data were collected from January to May 2021, focusing on dates with significant dust events. Label data were meticulously generated through annotations based on outputs from various satellites and groundbased observations. Subsequent data preprocessing and augmentation techniques, including normalization and cut-mix, were applied to enhance the dataset’s robustness and generalizability. To evaluate the dataset, model training was conducted. The results predicted by the model showed improvements over the detection results of existing algorithms. Future datasets will be developed with improved labeling methods and accuracy verification techniques. These dataset improvements are expected to contribute to the development of deep learning models with superior predictive performance compared to current dust detection algorithms.