1Integrated Master and PhD Student, Department of Geoinformatics, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, 02504 Seoul, South Korea
2Integrated Master and PhD Student, Department of Smart Cities, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, 02504 Seoul, South Korea
3Professor, Department of Geoinformatics, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, 02504 Seoul, South Korea
4Professor, Department of Smart Cities, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, 02504 Seoul, South Korea
5Research Specialist, Division for Environmental Planning, Water and Land Research Group, Korea Environment Institute, 370 Sicheong-daero, 30147 Sejong, South Korea
6Director, Neighbor System, 135 Jungdae-ro, Songpa-gu, 05717 Seoul, South Korea
7Managing Director, Neighbor System, 135 Jungdae-ro, Songpa-gu, 05717 Seoul, South Korea
8Senior Manager, E-terra, 51-17 Yangcheon-ro, Gangseo-gu, 07532 Seoul, South Korea
Copyright © 2024 GeoAI Data Society
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Conflict of Interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Funding Information
This work was supported by the 2023 sabbatical year research grant of the University of Seoul.
Data Availability Statement
The dataset supporting the findings of this study is currently under embargo. It is scheduled for public release on AI Hub in April 2025, at which time it will be assigned a DOI and made fully accessible. This approach ensures compliance with data-sharing requirements and facilitates reproducibility and further research.
Band | Wavelength (μm) | Resolution (m) |
---|---|---|
Band 1 - Coastal aerosol | 0.43-0.45 | 30 |
Band 2 - Blue | 0.45-0.51 | 30 |
Band 3 - Green | 0.53-0.59 | 30 |
Band 4 - Red | 0.64-0.67 | 30 |
Band 5 - NIR | 0.895-0.88 | 30 |
Band 6 - SWIR 1 | 1.57-1.65 | 30 |
Band 7 - SWIR 2 | 2.11-2.29 | 30 |
Band 8 - Panchromatic | 0.50-0.68 | 15 |
Band 9 - Cirrus | 1.36-1.38 | 30 |
Band 10 - TIRS 1 | 10.6-11.19 | 100 |
Band 10 - TIRS 2 | 11.50-12.51 | 100 |
No. | Region | Satellite | Acquisition date |
---|---|---|---|
1 | South Korea | Landsat 8 | 2024.04.07. |
2 | South Korea | Landsat 8 | 2024.05.09. |
3 | South Korea | Landsat 9 | 2023.05.08. |
4 | South Korea | Landsat 9 | 2023.05.15. |
5 | South Korea | Landsat 9 | 2023.06.16. |
6 | South Korea | Landsat 9 | 2023.06.16. |
7 | South Korea | Landsat 9 | 2023.08.19. |
8 | South Korea | Landsat 9 | 2023.10.22. |
9 | South Korea | Landsat 9 | 2023.11.07. |
10 | South Korea | Landsat 9 | 2024.03.14. |
11 | China | Landsat 8 | 2023.03.12. |
12 | China | Landsat 8 | 2023.03.30. |
13 | China | Landsat 8 | 2023.04.10. |
14 | China | Landsat 8 | 2023.04.10. |
15 | China | Landsat 8 | 2023.04.10. |
16 | China | Landsat 8 | 2023.04.17. |
17 | China | Landsat 8 | 2023.04.24. |
18 | China | Landsat 8 | 2023.05.08. |
19 | China | Landsat 8 | 2023.05.12. |
20 | China | Landsat 8 | 2023.05.28. |
21 | China | Landsat 8 | 2023.05.28. |
22 | China | Landsat 8 | 2023.06.09. |
23 | China | Landsat 8 | 2023.08.23. |
24 | China | Landsat 8 | 2023.09.01. |
25 | China | Landsat 8 | 2023.09.01. |
26 | China | Landsat 8 | 2023.09.06. |
27 | China | Landsat 8 | 2023.10.01. |
28 | China | Landsat 8 | 2023.10.01. |
29 | China | Landsat 8 | 2023.10.01. |
30 | China | Landsat 8 | 2023.10.15. |
31 | China | Landsat 8 | 2023.10.22. |
32 | China | Landsat 8 | 2023.10.24. |
33 | China | Landsat 8 | 2023.10.26. |
34 | China | Landsat 8 | 2023.11.18. |
35 | China | Landsat 8 | 2023.11.20. |
36 | China | Landsat 8 | 2023.11.22. |
37 | China | Landsat 8 | 2023.11.27. |
38 | China | Landsat 8 | 2023.11.29. |
39 | China | Landsat 8 | 2023.11.29. |
40 | China | Landsat 8 | 2024.05.14. |
41 | China | Landsat 9 | 2023.04.02. |
42 | China | Landsat 9 | 2023.04.09. |
43 | China | Landsat 9 | 2023.04.27. |
44 | China | Landsat 9 | 2023.04.30. |
45 | China | Landsat 9 | 2023.05.29. |
46 | China | Landsat 9 | 2023.06.01. |
47 | China | Landsat 9 | 2023.06.12. |
48 | China | Landsat 9 | 2023.07.19. |
49 | China | Landsat 9 | 2023.11.19. |
50 | China | Landsat 9 | 2023.11.21. |
51 | China | Landsat 9 | 2024.04.11. |
52 | China | Landsat 9 | 2024.05.02. |
53 | China | Landsat 9 | 2024.05.13. |
54 | China | Landsat 9 | 2024.05.15. |
55 | China | Landsat 9 | 2024.06.03. |
Data type | Patch size | Format | Quantity (number of samples) |
---|---|---|---|
Input data | |||
Landsat 8/9 | 256×256 | TIFF | 5,000 |
GEMS | 64×64 | TIFF | 5,000 |
Air quality monitoring network data | 64×64 | TIFF | 5,000 |
Label data | 256×256 | TIFF | 5,000 |
Essential |
||
---|---|---|
Field | Sub-Category | |
Title of Dataset | GeoAI Dataset for Urbanized Area Segmentation from Landsat 8/9 satellite imagery and GEMS | |
DOI | The dataset supporting the findings of this study is currently under embargo. It is scheduled for public release on AI Hub in April 2025, at which time it will be assigned a DOI and made fully accessible | |
Category | Environment | |
Temporal Coverage | 2023.03.01.-2024.06.30. | |
Spatial Coverage | Address | South Korea, China |
WGS84 Coordinates | WGS84 | |
[Latitude] N 26°-43° | ||
[Longitude] E112°-130° | ||
Personnel | Name | Geun-Hyouk Han |
Affiliation | Neighbor System | |
hyouk@neighbor21.co.kr | ||
CC License | CC BY-NC | |
Optional |
||
Field | Sub-Category | |
Summary of Dataset | GeoAI Dataset for Urbanized area Segmentation | |
Project | #33. Air pollution source space distribution data | |
Instrument | QGIS 3.16.8 |
NIR, near infrared; SWIR, shortwave infrared; TIRS, thermal infrared.
AI, artificial intelligence; GEMS, Geostationary Environment Monitoring Spectrometer.