1박사과정생, 건국대학교 일반대학원 사회환경플랜트공학과, 서울특별시 광진구 능동로 120, 05029, 대한민국
2학술연구교수, 건국대학교 공과대학 사회환경공학부, 서울특별시 광진구 능동로 120, 05029, 대한민국
3정교수, 건국대학교 공과대학 사회환경공학부, 서울특별시 광진구 능동로 120, 05029, 대한민국
1Ph.D. Student, Department of Civil, Environmental, and Plant Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, 05029 Seoul, South Korea
2Research Professor, Division of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, 05029 Seoul, South Korea
3Professor, Division of Civil and Environmental Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, 05029 Seoul, South Korea
Copyright © 2023 GeoAI Data Society
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Conflict of Interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Funding Information
This research was supported by The Development of Ground Operation System for Water Resources Satellite from K-water.
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
CC, Person’s correlation coefficient; rho, Spearman’s rank correlation coefficient; RMSE, root mean squared error; MLR, Multiple Linear Regression; GPR, Gaussian Process Regression; RFR, Random Forest Regression; XGB, Extreme Gradient Boosting; LGB, Light Gradient Boosting; ANN, Artificial Neural Network; DNN, Deep Neural Network.
Sort | Field | Subcategory#1 | Subcategory#2 |
---|---|---|---|
Essential | *Title | Spatial soil moisture (in volumetric) | |
*DOI name | https://doi.org/10.22761/GD.2023.0026 | ||
*Category | GeoscientificInformation | ||
Abstract | |||
*Temporal Coverage | 2014 to 2022 | ||
*Spatial Coverage | Address | ||
WGS84 Coordinates | Raster | ||
*Personnel | Name | Jeehun Chung | |
Affiliation | Konkuk University | ||
gop1519@konkuk.ac.kr | |||
*CC License | None | ||
Optional | *Project | None | |
*Instrument | None |
Station number | Korean name | Latitude | Longitude | Elevation (m) |
---|---|---|---|---|
026002D003 | 태백시 매봉산 | 37.2231 | 128.9651 | 1,153.0 |
032528A001 | 공주시 우성면 | 36.4934 | 127.0992 | 46.0 |
036052B006 | 영주시 용산리 | 36.8088 | 128.5403 | 189.0 |
036229B007 | 봉화군 외삼리 | 36.8986 | 128.8085 | 300.0 |
036531B008 | 영양군 대천리 | 36.6544 | 129.1486 | 227.0 |
036614B005 | 안동시 북후면 | 36.6640 | 128.7010 | 134.0 |
037268B004 | 상주시 공성면 | 36.2823 | 128.0739 | 100.0 |
037339B009 | 의성군 의성읍 | 36.3416 | 128.7428 | 142.0 |
038315B010 | 청도군 이서면 | 35.6479 | 128.6485 | 93.0 |
041404B001 | 대구시 북구 | 35.9548 | 128.5619 | 61.0 |
050415C005 | 밀양시 산내면 | 35.3541 | 128.5717 | 258.0 |
051394A001 | 창원시 대산면 | 35.3426 | 128.7078 | 5.0 |
059223A001 | 강진군 군동면 | 34.6438 | 126.7900 | 8.7 |
137180A001 | 서울시 서초구 | 37.4654 | 127.0900 | 58.0 |
209802A001 | 화천군 화천읍 | 38.1101 | 127.6945 | 139.0 |
210913E001 | 강릉 안반덕이 | 37.6191 | 128.7375 | 1,099.0 |
215821A001 | 양양군 양양읍 | 38.0920 | 128.6324 | 23.0 |
220844A001 | 원주시 흥업면 | 37.2958 | 127.9150 | 154.0 |
225874A001 | 횡성군 공근면 | 37.5275 | 127.9607 | 146.0 |
232803A001 | 평창군 여만리 | 37.3772 | 128.3940 | 293.0 |
232815E001 | 평창군 운교리 | 37.5375 | 128.4407 | 622.5 |
232941E001 | 평창군 진부면 | 37.6701 | 128.5943 | 584.0 |
233852A001 | 정선군 정선읍 | 37.4233 | 128.6540 | 374.0 |
235270E001 | 태백 귀네미골 | 37.3355 | 129.0053 | 728.0 |
235802A001 | 태백시 황지동 | 37.2063 | 128.9857 | 733.0 |
245825A002 | 삼척시 미로면 | 37.4103 | 129.1062 | 26.0 |
245832A001 | 삼척시 근덕면 | 37.3842 | 129.2311 | 19.0 |
250845E001 | 홍천군 자운리 | 37.7175 | 128.3802 | 720.0 |
255840A001 | 양구군 만대리 | 38.1529 | 128.0811 | 501.0 |
255840A002 | 양구군 후리 | 38.1751 | 128.0833 | 457.0 |
269804A001 | 음성군 소이면 | 36.9137 | 127.7618 | 100.0 |
323891D002 | 완주군 이서면 | 35.8288 | 127.0456 | 32.0 |
339814A001 | 세종시 연서면 | 36.5749 | 127.2814 | 55.0 |
340861A001 | 예산군 신암면 | 36.7421 | 126.8145 | 29.0 |
345802A001 | 청양군 청양읍 | 36.4255 | 126.7957 | 192.0 |
350808A001 | 홍성군 홍성읍 | 36.6026 | 126.5792 | 78.0 |
363844A001 | 청주시 남일면 | 36.5879 | 127.5065 | 58.0 |
363883B001 | 청원군 오창읍 | 36.7230 | 127.4651 | 40.0 |
365803A001 | 진천군 진천읍 | 36.8539 | 127.4298 | 101.0 |
373805A001 | 옥천군 옥천읍 | 36.3000 | 127.5965 | 117.0 |
380959A001 | 충주시 달천동 | 36.9502 | 127.8973 | 76.0 |
390874A001 | 제천시 봉양읍 | 37.1616 | 128.1767 | 320.0 |
409871A001 | 옹진군 영흥면 | 37.2529 | 126.4603 | 11.0 |
411801A001 | 고양시 구산동 | 37.6745 | 126.7007 | 24.0 |
412040A002 | 고양시 덕양구 | 37.6492 | 126.8704 | 39.0 |
441707D001 | 수원시 서둔동 | 37.2736 | 126.9930 | 46.0 |
445891A001 | 화성시 장안면 | 37.0773 | 126.8738 | 42.0 |
451873A001 | 평택시 오성면 | 37.0126 | 126.9807 | 31.0 |
464030A001 | 광주시 목현동 | 37.4323 | 127.2339 | 91.0 |
472830A001 | 남양주 진건읍 | 37.6498 | 127.1933 | 88.0 |
476801A001 | 양평군 양평읍 | 37.5090 | 127.5130 | 191.0 |
477802A001 | 가평군 가평읍 | 37.8462 | 127.5006 | 80.0 |
482841A001 | 양주시 광적면 | 37.8205 | 126.9727 | 107.0 |
486803A001 | 연천군 연천읍 | 38.0844 | 127.0784 | 49.0 |
513842A001 | 영광군 군서면 | 35.2823 | 126.4680 | 20.0 |
529805A001 | 장흥군 장흥읍 | 34.6706 | 126.9100 | 40.0 |
534844A001 | 무안군 현경면 | 35.0286 | 126.4457 | 67.0 |
535812A001 | 신안군 압해읍 | 34.8594 | 126.2990 | 23.0 |
536806A001 | 해남군 삼산면 | 34.5284 | 126.5596 | -1.0 |
539823A001 | 진도군 군내면 | 34.5115 | 126.2977 | 41.0 |
548912A001 | 고흥군 풍양면 | 34.5665 | 127.2581 | 52.0 |
588802A001 | 무주군 무주읍 | 36.0048 | 127.6743 | 214.0 |
627911A001 | 밀양시 상남면 | 35.4480 | 128.7579 | 7.0 |
635821A001 | 창녕군 대지면 | 35.5514 | 128.4767 | 36.0 |
638802A001 | 고성군 고성읍 | 34.9905 | 128.3309 | 20.0 |
650821A001 | 통영시 광도면 | 34.9036 | 128.4046 | 42.0 |
656933A001 | 거제시 거제면 | 34.8565 | 128.5805 | 41.0 |
660985B001 | 진주시 초전동 | 35.2054 | 128.1170 | 23.0 |
670807A001 | 거창군 거창읍 | 35.6732 | 127.9213 | 194.0 |
678806A001 | 합천군 용주면 | 35.5513 | 128.1124 | 49.0 |
712851A001 | 경산시 자인면 | 35.8171 | 128.8114 | 62.0 |
718814A001 | 칠곡군 약목면 | 36.0398 | 128.3813 | 47.0 |
719862A001 | 성주군 대가면 | 35.9148 | 128.2526 | 60.0 |
750873A001 | 영주시 안정로 | 36.8465 | 128.5609 | 173.0 |
755851A001 | 봉화군 석포면 | 37.0522 | 129.0031 | 586.0 |
760380A001 | 안동시 송천동 | 36.5382 | 128.8051 | 78.0 |
764803A001 | 영양군 영양읍 | 36.6561 | 129.1464 | 248.0 |
767862A001 | 울진군 매화면 | 36.9172 | 129.3794 | 27.0 |
769912A001 | 의성군 봉양면 | 36.3223 | 128.6465 | 90.0 |
770270A001 | 영천시 오미동 | 35.9908 | 128.9253 | 110.0 |
780950A001 | 경주시 용강상리 | 35.8672 | 129.2253 | 110.0 |
791945A001 | 포항시 북구 | 36.1131 | 129.3063 | 45.0 |
Machine learning method | Tuned hyperparameters |
---|---|
Random forest regression | n_estimators, max_depth, max_features |
Extreme gradient boosting | max_depth, gamma, colsample_bytree, learning_rate |
Light gradient boosting | max_depth, num_leaves, min_data_in_leaf, feature_fraction, bagging_fraction, learning_rate |
Artificial neural network | Number of neurons, optimizer, activation function, batch size, dropout rate, learning rate |
Deep neural network | Number of neurons, number of hidden layers, optimizer, activation function, batch size, dropout rate, learning rate |
Method | CC (train/test) | rho (train/test) | RMSE (train/test) (vol.%) |
---|---|---|---|
MLR | 0.544/0.437 | 0.570/0.513 | 7.346/8.867 |
GPR | 0.941/0.789 | 0.928/0.755 | 2.991/6.142 |
RFR | 0.981/0.814 | 0.979/0.803 | 2.208/6.021 |
XGB | 1.000/0.806 | 1.000/0.816 | 0.035/6.071 |
LGB | 0.989/0.812 | 0.988/0.823 | 1.380/5.818 |
ANN | 0.586/0.438 | 0.633/0.585 | 7.237/9.044 |
DNN | 0.810/0.678 | 0.814/0.697 | 5.333/7.591 |
Sort | Field | Subcategory#1 | Subcategory#2 |
---|---|---|---|
Essential | *Title | Spatial soil moisture (in volumetric) | |
*DOI name | |||
*Category | GeoscientificInformation | ||
Abstract | |||
*Temporal Coverage | 2014 to 2022 | ||
*Spatial Coverage | Address | ||
WGS84 Coordinates | Raster | ||
*Personnel | Name | Jeehun Chung | |
Affiliation | Konkuk University | ||
gop1519@konkuk.ac.kr | |||
*CC License | None | ||
Optional | *Project | None | |
*Instrument | None |
CC, Person’s correlation coefficient; rho, Spearman’s rank correlation coefficient; RMSE, root mean squared error; MLR, Multiple Linear Regression; GPR, Gaussian Process Regression; RFR, Random Forest Regression; XGB, Extreme Gradient Boosting; LGB, Light Gradient Boosting; ANN, Artificial Neural Network; DNN, Deep Neural Network.