Skip Navigation
Skip to contents

GEO DATA : GEO DATA

OPEN ACCESS
SEARCH
Search

Most view

Page Path
HOME > Articles and Issues > Most view
72 Most view
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles

Most-read articles are from the articles published in 2022 during the last three month.

Original Papers
Quantitative Study of Butterfly Diversity in Wando Quercus acuta Forest Over 5 Years (2017-2021)
Sanghun Lee, Na-Hyun Ahn
GEO DATA. 2023;5(2):55-59.   Published online June 20, 2023
DOI: https://doi.org/10.22761/GD.2023.0010
  • 2,442 View
  • 388 Download
AbstractAbstract PDF
This study presents the long-term quantitative data on butterflies in Wando Arboretum, which represents the only warm-temperate forest located in the southernmost part of South Korea. This arboretum has significant academic value as approximately 770 species of rare woody plants or herbs, such as the Japanese evergreen oak (Quercus acuta), found in warm temperate zones grow under natural conditions here. In this project, the butterflies in this region were studied due to their sensitivity to temperature changes. The study was conducted from March-April to October-November over 5 years (2017-2021) in the region dominated by Japanese evergreen oak. We found 1,743 individuals of 47 butterfly species belonging to five families. The acquired butterfly data could serve as a reference for the further development of a network-oriented database for assessing temporal climate changes.
GeoAI Dataset for Rural Hazardous Facilities Segmentation from KOMPSAT Ortho Mosaic Imagery
Sung-Hyun Gong, Hyung-Sup Jung, Moung-Jin Lee, Kwang-Jae Lee, Kwan-Young Oh, Jae-Young Chang
GEO DATA. 2023;5(4):231-237.   Published online December 28, 2023
DOI: https://doi.org/10.22761/GD.2023.0054
  • 1,104 View
  • 57 Download
AbstractAbstract PDF
In South Korea, rural areas have been recognized for their potential as sustainable spaces for the future, but they are currently facing major problems. Unplanned construction of facilities such as factories, livestock facilities, and solar panels near residential areas is destroying the rural environment and deteriorating the quality of life of residents. Detection and monitoring of rural facilities are necessary to prevent disorderly development in rural areas and to manage rural space in a planned manner. In this study, satellite imagery data was utilized to obtain information on rural areas, which is useful for observing large areas and monitoring time series changes compared to field surveys. In this study, KOMPSAT ortho-mosaic optical imagery from 2019 and 2020 were utilized to construct AI training datasets for rural hazardous facilities segmentation for Seosan, Anseong, Naju, and Geochang areas. The dataset can be used in image segmentation models to classify rural facilities and can be used to monitor potentially hazardous facilities in rural areas. It is expected to contribute to solving rural problems by serving as the basis for rural planning.
Evaluation of Slope Stability on Dam Using Ground-based Interferometric Radar
Seongcheon Park, Sanghoon Hong
GEO DATA. 2024;6(1):24-31.   Published online March 21, 2024
DOI: https://doi.org/10.22761/GD.2024.0001
  • 592 View
  • 17 Download
AbstractAbstract PDF
Dams are man-made structures built to manage water resources efficiently and prepare for natural disasters such as droughts and floods. It requires careful and continuous inspection to prevent its failure. Research reported to assess dam stability using terrestrial surveys such as ground penetration radar, electrical resistivity tomography, and remote sensing methods such as space-borne synthetic aperture radar (SAR). Differential interferometric SAR (DInSAR) calculates the phase difference between two consecutive images acquired at separate times and has been widely utilized to detect surface displacement from volcanoes, earthquakes, and ground subsidence. However, space-borne InSAR applications have limitations in acquiring flexible data for specific dates or regions due to the revisit cycle of the orbital configuration and the fixed acquisition geometry. In this feasibility study, the slope stability of the dam was evaluated using the Gamma Portable Radar Interferometer-II (GPRI-II) which has the advantage of overcoming the limitation of satellite observations. The GPRI-II is a ground-based real aperture radar that operates in the Ku-band wavelength (~1.7 cm), providing convenient portability and installation for high spatial and temporal resolution. A total of 20 GPRI-II datasets were acquired for 22 minutes on June 7, 2023, at a dam in Jeollanam-do for the DInSAR application. The displacement calculation revealed an average displacement of approximately -0.36 mm at a randomly selected point, which is negligible. The average displacement of -0.17 mm was observed for the entire dam. Our results suggest that ground-based radar interferometry could assess the dam slope stability.
Article
UAV Photogrammetry and LiDAR Based Dataset of Spartina anglica Distribution and High-resolution Topographic Map in Ganghwado
Keunyong Kim, Yeongjae Jang, Jingyo Lee, Joo-Hyung Ryu
GEO DATA. 2022;4(2):1-8.   Published online June 30, 2022
DOI: https://doi.org/10.22761/DJ2022.4.2.001
  • 959 View
  • 55 Download
  • 1 Citations
AbstractAbstract PDF
The Spartina anglica in the tidal flat at the southern part of Ganghwado, it is known that the distribution area has gradually expanded since it was officially announced as invasive alien species in 2015. The government and local governments are continuing their efforts to remove the S. anglica, and for this, continuous distribution change monitoring is required. This study extracted the data of distribution and extent area of S. anglica from Zenmuse P1 sensor, and generated the high-resolution Digital Elevation Model (DEM) from Zenmuse L1 sensor. Optical and Lidar images were photographed at an altitude of 70 m, and Ground Sampling Distance (GSD) of optical images was obtained at 0.9 cm and GSD of lidar images at 5 cm spatial resolution. However, the data are resampled and provided in GSD 25 cm to comply with the "National Spatial Information Security Management Regulations of the Ministry of Land, Infrastructure and Transport" and "Security Business Regulations of the National Intelligence Service".

Citations

Citations to this article as recorded by  
  • Spartina anglica-Derived Carbon-Coated PE Separator for Physically Restraining Polysulfide Migration in Lithium-Sulfur Batteries
    Ye Jin Jeon, Yuna Ha, Jang Kyun Kim, Youn-Jung Kim, Taeeun Yim
    Korean Journal of Chemical Engineering.2024; 41(4): 1187.     CrossRef
Erratum
Erratum to: Detailed Bathymetry and Seafloor Backscatter Image Dataset for Monitoring Ecosystem Environment: Southern Ulleungdo
Soon Young Choi, Chang Hwan Kim, Won Hyuck Kim, Chan Hong Park
GEO DATA. 2024;6(1):43-43.   Published online February 1, 2024
DOI: https://doi.org/10.22761/GD.2024.e001
Corrects: GEO DATA 2023;5(4):364
  • 739 View
  • 14 Download
PDF
Original Papers
Exploring Wild Bees Diversity in Seocheon Maeul-Soop: A Quantitative Study
Sanghun Lee, Ohchang Kwon, Dong Su Yu, Jeong-Seop An, Na-Hyun Ahn
GEO DATA. 2024;6(1):1-7.   Published online March 26, 2024
DOI: https://doi.org/10.22761/GD.2024.0003
  • 464 View
  • 45 Download
AbstractAbstract PDF
Wild bees are important pollinators in the ecosystem, and it is important to monitor their abundance and diversity to characterize and conserve these pollinators. In this study, wild bees were collected from a Maeul-soop in Seocheon-gun, Chungcheongnam-do, Republic of Korea for 2 years from February 2019 to October 2020. From the survey, a total of 3,258 wild bees from 9 families and 57 species were collected over 2 years in the Maeul-soop. The most dominant species was the Andrena kaguya, followed by the Apis mellifera, the Eucera spurcatipes, the Seladonia aeraria, and the Lasioglossum sibiriacum. Monthly changes in the number of species and populations show that the number of species increased from February and peaked in August, and the population peaked in April and then decreased. In addition, in the list of wild bee species collected over the past 2 years, the Apidae was the largest with 16 species, followed by the Halictidae with 13 species and the Megachilidae with nine species. However, although there is only one species of Andrena kaguya in the Andrenidae, its population is 2,084, which is the largest among all wild bees investigated in this study. The results of this study will be useful in understanding the impact of pollinating insects due to climate change in the future.
Evaluation of Calibration Using Corner Reflector with Ground-Based Interferometric Radar
Je-Yun Lee, Jeong-Heon Ju, Sang-Hoon Hong
GEO DATA. 2024;6(1):32-42.   Published online March 28, 2024
DOI: https://doi.org/10.22761/GD.2024.0002
  • 374 View
  • 23 Download
AbstractAbstract PDF
The accuracy of microwave remote sensing relies on the calibration of the radar measurement. It is important to estimate the radar cross-section (RCS) using a passive corner reflector (CR) or active transponder to evaluate the quality of imaging radar data. A strong and consistent RCS can be achieved by the acquisition of radar signals concentrated at specific angles during the CR calibration procedure. There are several types of CR depending on the shape and size such as triangular trihedrals, square trihedrals, dihedrals, spheres, or cylinders. In this study, we examine the RCSs using three types of CR with Ku-band ground-based real aperture radar equipment, the Gamma Portable Radar Interferometer-II. It can be easily deployed to acquire fully polarimetric radar observations. The initial experiment was conducted at Busan Sam-nak Auto Camping Site on November 1, 2023. The amplitude images show much higher backscattered radar signals at the CR location, whereas relatively lower power has been captured in the surrounding areas. The attenuation factors in the radar receivers could be useful to prevent saturation around the CR location at the line-of-sight direction. The experiment indicates that the different levels of the RCS measurements from three types of CRs could be utilized for calibration study with fully polarimetric radar observations.
Article
A Geological Environment Characteristics Dataset of Tidal Flat Surface Sediments: A 2021 Pilot Study of the Gomso Bay Tidal Flat Area to Use of Sediment Type Data
Kyoungkyu Park, Han Jun Woo, Hoi-Soo Jung, Joo Bong Jeong, Joo-Hyung Ryu, Jun-Ho Lee
GEO DATA. 2022;4(2):9-22.   Published online June 30, 2022
DOI: https://doi.org/10.22761/DJ2022.4.2.002
  • 799 View
  • 31 Download
  • 1 Citations
AbstractAbstract PDF
The Gomso Bay tidal flat is located between Buan-gun and Gochang-gun in Jeollabuk-do, Korea; it is a semi-closed bay in an area where tides prevail over waves. Tidal flats are mainly found south of Gochang-gun, and the main stream located north of the tidal flats is about 15 m deep and 900 m wide at low tide. Limited direct sampling is necessary for analyzing the geological environment of intertidal tidal flats, depending on the expected ebb-tide time and the number of survey items allowed for tidal flat access. This study assessed field measurement and laboratory analysis items for obtaining and establishing geological environment data to use of sediment type data in a pilot research area in the Gomso Bay tidal flat. Thirty sites were examined on June 22 and 24, 2021 (survey time about 3.5 hours for the 2 days). The field measurements were the sample date (year/month/day/hour/minute), ellipsoid height using a real-time kinematics global positioning system (RTK GPS) (m), shear strength (kg/cm2), and Munsell color. Samples for particle size (phi, Φ), specific density, porosity (%), moisture content (%), total organic carbon (%), total carbon (%) and total nitrogen (%) were placed in zipper bags and polypropylene (PP) bottles. The sedimentary phases were classified following Folk and Ward (1957), the organic matter was characterized based on particle size analysis and each experimental result was verified. In the future, a geological environment characteristics dataset based on this pilot study will be used as basic data to assess changes in the tidal flat topography and sedimentation environment. It should be useful data for research, tidal flat environment conservation management and free open data for users of related researchers.

Citations

Citations to this article as recorded by  
  • Characteristics of temporal-spatial variations of zooplankton community in Gomso Bay in the Yellow Sea, South Korea
    Young Seok Jeong, Min Ho Seo, Seo Yeol Choi, Seohwi Choo, Dong Young Kim, Sung-Hun Lee, Kyeong-Ho Han, Ho Young Soh
    Environmental Biology Research.2023; 41(4): 720.     CrossRef
Original Papers
The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2
Eu-Ru Lee, Ha-Seong Lee, Sun-Cheon Park, Hyung-Sup Jung
GEO DATA. 2024;6(1):14-23.   Published online March 28, 2024
DOI: https://doi.org/10.22761/GD.2023.0055
  • 345 View
  • 17 Download
AbstractAbstract PDF
The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established.
Vegetation Spatial Distribution on Taean Duung Wetland Protect Area
Haeseon Shin, Sanghun Lee, Sangwook Han
GEO DATA. 2024;6(1):8-13.   Published online March 28, 2024
DOI: https://doi.org/10.22761/GD.2024.0004
  • 331 View
  • 22 Download
AbstractAbstract PDF
In this study, we conduct for providing information on the status of vegetation space distribution in the Duung wetland protected area and to help manage the wetland protected area. To understand the spatial distribution of vegetation in Duung Wetland, used the results of surveys in 2019 and 2023. As a result of the study, the number of vegetation types increased by 4 from 20 to 24. Four communities were newly investigated, including the Utricularia tenuicaulis community, Pueraria montana var. lobata-Elymus tsukushiensis community, Spiraea prunifolia for. simpliciflora community, and Miscanthus sinensis var. purpurascens community. In accordance with the environment, the range of aquatic plant communities such as Trapa japonica community and Nymphaea tetragona var. angusta community increased, and the succession zone of cultivated land expanded dry grassland. The survey results can be used as basic data for systematic management of the Duung wetland protected area.
Article
The Dataset of UAV Based High-resolution Tidal Topography at the Nakdong Estuary: Focusing on Jin-u Island and Shin-ja Island
Yeongjae Jang, Jingyo Lee, Joo-Hyung Ryu, Kye-Lim Kim, Hahn Chul Jung, Keunyong Kim
GEO DATA. 2022;4(1):27-36.   Published online March 31, 2022
DOI: https://doi.org/10.22761/DJ2022.4.1.003
  • 909 View
  • 31 Download
  • 1 Citations
AbstractAbstract PDF
In the tidal flats of the Nakdong Estuary, eight weirs were installed as part of the Four Major River Restoration Project in 2011, and the environment changed from a flowing stream to a still water stream. As the Nakdong River’s weir was permanently opened in February 2022, the topography and ecological environment are expected to large change. In this study, Unmanned Aerial Vehicle (UAV) photogrammetry was conducted on the tidal flats of the Nakdong Estuary in November 2021, the environment before the Nakdong River floodgates were opened. The study area was surveyed using the Network-RTK (Real-Time Kinematic) method to obtain Ground Control Point (GCP), and using an UAV, orthographic image and digital elevation model were generated for an area of 3.47 ㎢ near Jin-u island and 2.75 ㎢ near Shin-ja island. A result of spatial resolution of 1.8 cm was obtained, the result was verified using checkpoints, and results with accuracy exceeding 1 cm were obtained in both Sin-u Island and Jin-woo Island. In the future, changes in the topography and sedimentation environment of this area are expected, so it will be useful data for various research and conservation management.

Citations

Citations to this article as recorded by  
  • Influence of Precipitation Conditions and Discharge Rates of River Estuary Barrages on Geomorphological Changes in an Estuarine Area
    Sung-Bo Kim, Doo-Pyo Kim
    Applied Sciences.2023; 13(17): 9661.     CrossRef
Original Papers
High-Resolution Bioclimatic Variables in Mt. Jirisan and Hallasan under Climate Change Scenario
Sanghun Lee, Seungbum Hong, Kyungeun Lee
GEO DATA. 2023;5(4):314-320.   Published online December 20, 2023
DOI: https://doi.org/10.22761/GD.2023.0039
  • 812 View
  • 101 Download
AbstractAbstract PDF
Many endemic and rare species live in Korea’s subalpine zone, but there have been many research results showing that alpine creatures are disappearing due to recent climate change. Therefore, in this study, bioclimatic variables with 100 m resolution were created for Mt. Jirisan and Mt. Hallasan, representative mountainous regions in Korea. Nineteen high-resolution bioclimatic variables were created for the current and 4 future periods, and the generated data is believed to represent topographical characteristics well. This data is expected to be useful to predict potential habitats through species distribution modeling and the impact of climate change on organisms limited to alpine regions.
The Cheonji Lake GeoAI Dataset Based in Synthetic Aperture Radar Images: TerraSAR-X, Sentinel-1 and ALOS PALSAR-2
Eu-Ru Lee, Ha-Seong Lee, Ji-Min Lee, Sun-Cheon Park, Hyung-Sup Jung
GEO DATA. 2023;5(4):251-261.   Published online December 29, 2023
DOI: https://doi.org/10.22761/GD.2023.0056
  • 535 View
  • 31 Download
AbstractAbstract PDF
The fluctuations in the area and level of Cheonji in Baekdu Mountain have been employed as significant indicators of volcanic activity. Monitoring these changes directly in the field is challenging because of the geographical and spatial features of Baekdu Mountain. Therefore, remote sensing technology is crucial. Synthetic aperture radar utilizes high-transmittance microwaves to directly emit and detect the backscattering from objects. This weatherproof approach allows monitoring in every climate. Additionally, it can accurately differentiate between water bodies and land based on their distinct roughness and permittivity characteristics. Therefore, satellite radar is highly suitable for monitoring the water area of Cheonji. The existing algorithms for classifying water bodies using satellite radar images are significantly impacted by speckle noise and shadows, resulting in frequent misclassification. Deep learning techniques are being utilized in algorithms to accurately compute the area and boundary of interest in an image, surpassing the capabilities of previous algorithms. This study involved the creation of an AI dataset specifically designed for detecting water bodies in Cheonji. The dataset was constructed using satellite radar images from TerraSAR-X, Sentinel-1, and ALOS-2 PALSAR-2. The primary objective was to accurately detect the area and level of water bodies. Applying the dataset of this study to deep learning techniques for ongoing monitoring of the water bodies and water levels of Cheonji is anticipated to significantly contribute to a systematic method for monitoring and forecasting volcanic activity in Baekdu Mountain.
The Study of Distribution for the Flora of Alien Species and Ecosystem Disturbing Species on Coastal Sand Dune in Chungcheong to Jeolla Region, South Korea
Seonghun Lee, Jihyun Kang, Hyun-Su Hwang
GEO DATA. 2023;5(4):262-272.   Published online December 20, 2023
DOI: https://doi.org/10.22761/GD.2023.0031
  • 539 View
  • 39 Download
AbstractAbstract PDF
This study was conducted to provide the coastal sand dunes flora of vascular plants in Chungcheong to Jeolla region based national coastal dune natural environment survey from 2018 to 2019. In the study area, a total 631 taxa, consisting of 119 family, 372 genera, 566 species, 8 subspecies, 50 varieties, and 7 forma, were found. Among them, there were 95 taxa with 23 family, 66 genera, 99 species and 5 varieties as alien species. The number of alien species ranged from 7 to 45 on each coastal sand dune. The largest number was recorded in Sinjimyeongsa dune, while the lowest was in Namujeon dune. Moreover, ecosystem disturbing species had mainly existed on Sinhap dune. Japanese hop (Humulus japonicus) were distributed most widely on 17 coastal sand dune, and bur cucumber (Sicyos angulatus) was only found on Sinhap dune. The spatial status of flora of coastal sand dune in our data can be basic ecological information for the conservation and management of the coastal dune plant species diversity.
GeoAI Dataset for Industrial Park and Quarry Classification from KOMPSAT-3/3A Optical Satellite Imagery
Che-Won Park, Hyung-Sup Jung, Won-Jin Lee, Kwang-Jae Lee, Kwan-Young Oh, Jae-Young Chang, Moung-jin Lee, Geun-Hyouk Han, Il-Hoon Choi
GEO DATA. 2023;5(4):238-243.   Published online December 28, 2023
DOI: https://doi.org/10.22761/GD.2023.0052
  • 493 View
  • 45 Download
AbstractAbstract PDF
Air pollution is a serious problem in the world, and it is necessary to monitor air pollution emission sources in other neighboring countries to respond to the problem of air pollution spreading across borders. In this study, we utilized domestic and international optical images from KOMPSAT-3/3A satellites to build an AI training dataset for classifying industrial parks and quarries, which are representative sources of air pollution emissions. The data can be used to identify the distribution of air pollution emission sources located at home and abroad along with various state-of-the-art models in the image segmentation field, and is expected to contribute to the preservation of Korea’s air environment as a basis for establishing air-related policies.

GEO DATA : GEO DATA