Skip Navigation
Skip to contents

GEO DATA : GEO DATA

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
7 "Deep learning"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
DATA ARTICLE
GeoAI Dataset for Industrial Park Segmentation from Sentinel-2 Satellite Imagery and GEMS
Sung-Hyun Gong, Hyung-Sup Jung, Geun-han Kim, Geun-Hyouk Han, Il-Hoon Choi, Jin-Sung Hong
Received November 20, 2024  Accepted January 7, 2025  Published online February 13, 2025  
DOI: https://doi.org/10.22761/GD.2024.0054    [Epub ahead of print]
  • 75 View
  • 10 Download
AbstractAbstract PDF
Air pollution in East Asia presents critical environmental and health challenges, particularly in industrial regions affected by domestic and cross-border emissions. This study developed a GEO AI dataset specifically for industrial park segmentation, integrating Sentinel-2 satellite imagery, Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite data, and Air Quality Monitoring Network data. Optimized for semantic segmentation tasks with labeled data specifically for industrial park classification, this dataset serves as a foundational asset for the precise identification and spatial tracking of major air pollution sources. We validated the dataset’s applicability using a modified U-Net model, achieving a mean intersection over union of 0.8146 and pixel accuracy of 0.9608, thereby demonstrating its potential as a tool for detecting and monitoring pollutant sources in industrial areas. With future expansion through additional temporal data and diverse pollutant measurements, this dataset is anticipated to support regional air quality monitoring efforts and inform strategies for pollution control across East Asia.
Data Articles
GeoAI Dataset for Urbanized Area Segmentation from Landsat 8/9 Satellite Imagery and GEMS
Sung-Hyun Gong, Hyung-Sup Jung, Geun-Han Kim, Geun-Hyouk Han, Il-Hoon Choi, Jin-Sung Hong
GEO DATA. 2024;6(4):478-486.   Published online December 31, 2024
DOI: https://doi.org/10.22761/GD.2024.0053
  • 163 View
  • 14 Download
AbstractAbstract PDF
In South Korea, air pollution has emerged as a pressing social issue, necessitating data-driven approaches to monitor sources of air pollutants. This study constructed a GEO AI dataset for detecting air pollution sources in urbanized areas, utilizing Landsat 8/9 satellite imagery, Geostationary Environment Monitoring Spectrometer geostationary satellite data, and air quality monitoring network data. The dataset is optimized for semantic segmentation tasks, including labeled data for urban area segmentation, and is designed to enable precise detection of pollution sources within urban regions by integrating satellite imagery and air quality information. Using this dataset, we applied a modified U-Net model to classify pollutant sources in urbanized areas, achieving high performance with an mIoU of 0.8592 and pixel accuracy of 0.9433. These results demonstrate the effectiveness of the GEO AI dataset as a tool for identifying and managing major pollution sources, providing foundational data for air quality monitoring and policy development across South Korea and East Asia. With further integration of additional air pollution data, this dataset is expected to contribute to long-term air quality management and the mitigation of health impacts associated with pollution.
Solar Energy Datasets of Deep Learning Models Incorporating with GK-2A and ASOS Ground Measurements
Jong-Sung Ha, Seungtaek Jeong, Seyun Min, Yejin Lee, Suhwan Kim, Doehee Han, Jong-Min Yeom
GEO DATA. 2024;6(4):471-477.   Published online December 31, 2024
DOI: https://doi.org/10.22761/GD.2024.0036
  • 176 View
  • 27 Download
AbstractAbstract PDF
This study presents the construction and evaluation of a dataset for estimating solar energy using the GK-2A satellite and deep learning. The GK-2A is currently utilized in real-time for weather observations over the Korean Peninsula. The GK-2A satellite features 16 channels, producing radiative channel images at spatial resolutions ranging from 500 m to 2 km, with temporal intervals as short as 2 minutes depending on the area. These satellite data are used in various fields, including meteorology, oceanography, vegetation monitoring, and renewable energy. In this study, we used spectral channel data from the GK-2A expended local area satellite from January 2021 to December 2022. For training and evaluating the accuracy of the deep learning model, we utilized data from 98 automated synoptic observing system ground observation sites operated by the Korea Meteorological Administration. A back-propagation neural network model, which showed meaningful results in estimating solar energy, was applied. Various hyperparameters were optimized, and data preprocessing and separation were conducted to optimize the model. The study also compared the performance of the deep learning model with physical models. The BPNN deep learning model achieved a statistical accuracy of root mean squared error (RMSE) 77.32 Wm-2, mean bias error (MBE) -0.48 Wm-2, and R2 0.91, indicating high accuracy. In contrast, the physical model showed an RMSE of 132.01 Wm-2, MBE -76.51 Wm-2, and an R2 of 0.74, displaying relatively lower accuracy compared to the deep learning model. Additionally, the spatio-temporal map of solar energy generated by the deep learning model successfully captured the attenuation of radiation due to clouds and the variation in solar energy based on the position of the sun. The solar energy data produced in this study are expected to be useful as input data for various fields such as meteorology, agriculture, environmental monitoring, and marine sciences.
Original Papers
GeoAI Dataset for Rural Hazardous Facilities Segmentation from KOMPSAT Ortho Mosaic Imagery
Sung-Hyun Gong, Hyung-Sup Jung, Moung-Jin Lee, Kwang-Jae Lee, Kwan-Young Oh, Jae-Young Chang
GEO DATA. 2023;5(4):231-237.   Published online December 28, 2023
DOI: https://doi.org/10.22761/GD.2023.0054
  • 2,167 View
  • 82 Download
  • 1 Citations
AbstractAbstract PDF
In South Korea, rural areas have been recognized for their potential as sustainable spaces for the future, but they are currently facing major problems. Unplanned construction of facilities such as factories, livestock facilities, and solar panels near residential areas is destroying the rural environment and deteriorating the quality of life of residents. Detection and monitoring of rural facilities are necessary to prevent disorderly development in rural areas and to manage rural space in a planned manner. In this study, satellite imagery data was utilized to obtain information on rural areas, which is useful for observing large areas and monitoring time series changes compared to field surveys. In this study, KOMPSAT ortho-mosaic optical imagery from 2019 and 2020 were utilized to construct AI training datasets for rural hazardous facilities segmentation for Seosan, Anseong, Naju, and Geochang areas. The dataset can be used in image segmentation models to classify rural facilities and can be used to monitor potentially hazardous facilities in rural areas. It is expected to contribute to solving rural problems by serving as the basis for rural planning.

Citations

Citations to this article as recorded by  
  • Performance Comparison of Water Body Detection from Sentinel-1 SAR and Sentinel-2 Optical Imagery Using Attention U-Net Model
    Il-Hoon Choi, Eu-Ru Lee, Hyung-Sup Jung
    Korean Journal of Remote Sensing.2024; 40(5-1): 507.     CrossRef
GeoAI Dataset for Industrial Park and Quarry Classification from KOMPSAT-3/3A Optical Satellite Imagery
Che-Won Park, Hyung-Sup Jung, Won-Jin Lee, Kwang-Jae Lee, Kwan-Young Oh, Jae-Young Chang, Moung-jin Lee, Geun-Hyouk Han, Il-Hoon Choi
GEO DATA. 2023;5(4):238-243.   Published online December 28, 2023
DOI: https://doi.org/10.22761/GD.2023.0052
  • 1,381 View
  • 73 Download
  • 1 Citations
AbstractAbstract PDF
Air pollution is a serious problem in the world, and it is necessary to monitor air pollution emission sources in other neighboring countries to respond to the problem of air pollution spreading across borders. In this study, we utilized domestic and international optical images from KOMPSAT-3/3A satellites to build an AI training dataset for classifying industrial parks and quarries, which are representative sources of air pollution emissions. The data can be used to identify the distribution of air pollution emission sources located at home and abroad along with various state-of-the-art models in the image segmentation field, and is expected to contribute to the preservation of Korea’s air environment as a basis for establishing air-related policies.

Citations

Citations to this article as recorded by  
  • Performance Comparison of Water Body Detection from Sentinel-1 SAR and Sentinel-2 Optical Imagery Using Attention U-Net Model
    Il-Hoon Choi, Eu-Ru Lee, Hyung-Sup Jung
    Korean Journal of Remote Sensing.2024; 40(5-1): 507.     CrossRef
GeoAI Dataset for Training Deep Learning-Based Optical Satellite Image Matching Model
Jin-Woo Yu, Che-Won Park, Hyung-Sup Jung
GEO DATA. 2023;5(4):244-250.   Published online December 28, 2023
DOI: https://doi.org/10.22761/GD.2023.0048
  • 1,419 View
  • 65 Download
  • 1 Citations
AbstractAbstract PDF
Satellite imagery is being used to monitor the Earth, as it allows for the continuous provision of multi-temporal observations with consistent quality. To analyze time series remote sensing data with high accuracy, the process of image registration must be conducted beforehand. Image registration techniques are mainly divided into region-based registration and feature-based registration, and both techniques extract the same points based on the similarity of spectral characteristics and object shapes between master and slave images. In addition, recently, deep learning-based siamese neural network and convolutional neural network models have been utilized to match images. This has high performance compared to previous non-deep learning algorithms, but a very large amount of data is required to train a deep learning-based image registration model. In this study, we aim to generate a dataset for training a deep learning-based optical image registration model. To build the data, we acquired Satellite Side-Looking (S2Looking) data, an open dataset, and performed preprocessing and data augmentation on the data to create input data. After that, we added offsets to the X and Y directions between the master and slave images to create label data. The preprocessed input data and labeled data were used to build a dataset suitable for image registration. The data is expected to be useful for training deep learning-based satellite image registration models.

Citations

Citations to this article as recorded by  
  • Performance Comparison of Water Body Detection from Sentinel-1 SAR and Sentinel-2 Optical Imagery Using Attention U-Net Model
    Il-Hoon Choi, Eu-Ru Lee, Hyung-Sup Jung
    Korean Journal of Remote Sensing.2024; 40(5-1): 507.     CrossRef
Comparative Study of Machine Learning and Deep Learning Models Applied to Data Preprocessing Methods for Dam Inflow Prediction
Youngsik Jo, Kwansue Jung
GEO DATA. 2023;5(2):92-102.   Published online June 30, 2023
DOI: https://doi.org/10.22761/GD.2023.0016
  • 1,138 View
  • 55 Download
AbstractAbstract PDF
In this study, we employed representative machine learning (ML) and deep learning (DL) models previously utilized in the fields of rainfall and runoff analysis in the water resources sector. We not only performed hyperparameter tuning of the models but also considered the characteristics of the model and the combination and preprocessing (such as lag-time and moving average) of meteorological and hydrological data. We then compared and evaluated the performance of the models according to various scenarios of data characteristics and ML & DL model combinations for predicting daily water inflow. To accomplish this, we utilized meteorological and hydrological data collected from 1974 to 2021 in the Soyang River Dam Basin to examine 1) precipitation, 2) inflow, and 3) meteorological data as primary independent variables. We then employed a total of 36 scenario combinations as input data for ML & DL, applying a) lag-time, b) moving average, and c) component separation conditions for inflow. To identify the most suitable data combination characteristics and ML & DL models for predicting daily inflow, we compared and evaluated 10 different ML & DL models: 1) Linear Regression, 2) Lasso, 3) Ridge, 4) Support Vector Regression, 5) Random Forest (RF), 6) Light Gradient Boosting Model, 7) XGBoost for ML, and 8) Long Short-Term Memory (LSTM) models, 9) Temporal Convolutional Network (TCN), and 10) LSTM-TCN for DL.

GEO DATA : GEO DATA
TOP